
Stephen Checkoway

Programming Abstractions
Week 5-1: Exam 1 Review



Exam Format

6 implementation problems ("Write a procedure to do x")


1 extra credit problem


Write all of your solutions in DrRacket


Turn in your completed exam via Blackboard


Exam will be released at midnight on Thursday


Your solutions are due by 23:59 on Thursday



Class time

During Thursday's class, I will be in the class's Zoom meeting, feel free to hang 

out in there


If you have a question, send me a private chat either with the question itself or 

just say "I have a question" and I'll bring you into a breakout room and you can 

ask your question privately there



Possible question topics

Basic Scheme/Racket functions and special forms


‣ cons, first (car), rest (cdr), list, append, member, empty?, filter, etc.


‣ define, lambda, if, cond, let, letrec, and, or, etc.


map and apply


foldl and foldr and how they differ


Recursion


‣ Tail recursion


‣ "Accumulator passing style"


Closures: how to create and use them



Given a list lst and an element x, how can we create a new list that 

consists of x prepended to lst? E.g., if lst is '(1 2 3) and x is 4, we 

want '(4 1 2 3)

A. (prepend x lst)

B. (cons x lst)

C. (append x lst)

D. It's not possible to modify lst

E. None of the above

5



Given a list lst and an element x, how can we create a new list that 

consists of x appended to lst? E.g., if lst is '(1 2 3) and x is 4, we 

want '(1 2 3 4)

A. (cons lst x)

B. (append lst x)


C. (append lst '(x))


D. (append lst (list x))


E. None of the above

6



Given a list of lists lsts, how do you get a list containing the second element 

of each list, in order?

A. (map second lsts)

B. (map rest lsts)

C. (apply second lsts)

D. (apply rest lsts)


E. None of the above

7



Example

Represent a student as a three-element list (name, year, gpa), e.g., 

'("Jane" 2 3.5) represents Jane who is a second-year and has a 3.5 GPA

Write a procedure (select lst) that takes a list of students and returns the 

name of all second or third year students with a GPA that's at least a 3.0



Enumerate

Write a tail-recursive procedure (enumerate lst) that takes a list and returns 

a list of 2-element lists (index elem) where elem is in lst and index is its 

index, in order.


E.g., (enumerate '(a b c)) returns '((0 a) (1 b) (2 c))



Flip

Write a procedure (flip f) that that takes a 2-argument procedure f and 

returns a 2-argument closure that, when called, calls f with its arguments in the 

opposite order. I.e., ((flip f) x y) is the same as (f y x)

Write (flip* f) that takes any procedure f and returns a closure that, when 

called, calls f with all of its arguments reversed. E.g.,

‣ ((flip* f)) is (f);

‣ ((flip* g) x) is (g x);

‣ ((flip* h) x y) is (h y x);

‣ ((flip* i) x y z) is (i z y x); and so forth



Compose two functions

Write a procedure (compose f g) that takes two 1-argument procedures f 

and g and returns a procedure that when called with the argument x returns  

(f (g x))



Reverse a structured (non-flat) list

Write a procedure (reverse-all lst) that takes a non-flat list and reverse it, 

including all contained lists


E.g., (reverse-all '(1 () (2 3 (4 5)) 6)) returns  

'(6 ((5 4) 3 2) () 1)


